
What is a Linker and How Does it Work 
Matt Pietrek 

 

Revised July 1997  Page 1 of 9 

Note: Figures 1 and 3 at End of Article 
 
In this column, I usually discuss technologies that are new, or at least haven't already been covered 
extensively. However, with more and more developers joining the ranks of Win32® programmers, 
topics that are old hat to veterans remain a mystery to newer programmers. The subject of linkers falls 
into this category. Before you Visual Basic® programmers head for the exits, be advised that Visual 
Basic 5.0 uses a linker. In fact, it uses the same linker that Visual C++® 5.0 does. Visual Basic 5.0 
does a good job of hiding this fact, but if you snoop around you'll see that it produces OBJ files and 
sends them off to the Microsoft linker.  
 
What is a linker? How does it work? This month I'll shed some light on these questions. As part of 
researching this column, I went back to my old sources of information. Interestingly, it seems that 
much of what I'll describe here is either out of print or no longer on the MSDN CD-ROM, even though 
linker technology affects nearly every Windows programmer.  
 
For the purpose of this column, I'll consider Microsoft's LINK.EXE to be the standard linker. (Other 
linkers, such as Borland's TLINK32, may have slight differences in behavior from what I describe 
here.) In a future column, I'll go a step further and examine some of the more useful and interesting 
switches in the Microsoft linker. First, I'll give you an overly simplistic definition of a linker, and then 
refine it later. A linker's job is to take one or more object modules (typically OBJ files) and combine 
them into an executable file (that is, an EXE or DLL). However, this begs the question: what is an 
object module?  
 
An object module is the output from a program that takes human-readable text and translates it into 
machine code and data that a CPU can understand. For C++, the C++ compiler reads a C++ source 
file. For assembly language, an assembler (for instance, MASM) reads an assembly language (ASM) 
file that contains direct equivalents for the code and data bytes that the CPU uses. In Visual Basic 5.0, 
the input files are the FRM, BAS, and CLS files from your project. This concept holds true for most 
other languages, such as Fortran. 
  
The primary components of an object module are machine code and data. The raw bytes that make 
up the code and data are stored in contiguous blocks called sections. For example, Microsoft 
compilers put their machine code into a section called .text, and data goes into a section called .data. 
These names have no special meaning other than as a reminder of the intended use of a particular 
section. Other compilers can (and do) use different names for their sections. If you've done MS-DOS® 
or 16-bit Windows® programming, you can substitute the word "segment" for "sections" in the 
preceding description, and much of what I'll say still applies. If you have Visual C++ installed on your 
system, you can see sections within an OBJ file yourself with the DUMPBIN program. Execute the 
command  
 
 DUMPBIN <objname> 
 
where <objname> is the name of any OBJ file. Figure 1 gives a rundown of the most commonly 
encountered sections. You can see the sections from a typical compile of a C++ program by running 
DUMPBIN on an OBJ, such as CHKSTKOBJ from the Visual C++ \LIB directory:  
 
 Dump of file CHKSTK.OBJ 
 File Type: COFF OBJECT 
      Summary 
            0 .data 
           2F .text 
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The fancy name for the output of a compiler or assembler is a compilation unit. However, most of us 
just think of them as OBJ files. The linker's most important job is to collect all the compilation units and 
combine all the sections from the different compilation units. Of course, if things were really this 
simple, the linker would be nothing more than a fancy program for concatenating blobs of data. The 
complicated work of a linker comes from processing fixups. More on this later. 
 
You may be wondering how the linker decides to arrange the code and data sections from the various 
OBJs in the final executable. It turns out that the linker has an elaborate set of rules that must be 
followed. In fact, the duties of a linker are so complicated that it makes two passes through its input 
files. The first pass allows the linker to see what it will be working with and collect its thoughts. In the 
second pass, the linker applies all the rules to write out the executable file. 
 
While I won't attempt to describe every aspect of every linker rule here, there are a couple of rules 
that cover the majority of linker behavior. The primary rule is that the linker must put all of the code 
and data from every specified OBJ file into the executable. If you give the linker three OBJ files, then 
the code and data from all three OBJ files must somehow be incorporated into the executable. 
However, the linker doesn't simply take the raw sections from each OBJ file and string them end to 
end in the executable. Rather, the linker combines (concatenates) all sections with the same name. 
For example, if the three OBJ files each had a .text section, the resulting executable will have a 
single .text section, comprised of the three individual .text sections concatenated together in the order 
in which they were encountered. 
 

Another rule observed by the linker is that the sequence of sections in the executable file is dictated 
by the order in which the linker processes the sections. The linker works its way through the list of 
OBJ files in exactly the order specified on the command line. However, the primary rule of combining 
sections with the same name takes precedence. 
 

 
 

Figure 2 A.OBJ, B.OBJ, and C.OBJ 
 



What is a Linker and How Does it Work 
Matt Pietrek 

 

Revised July 1997  Page 3 of 9 

Figure 2 shows three OBJ files, A.OBJ, B.OBJ, and C.OBJ. In each file are three sections—all have 
_text and _data sections, but in different positions within each OBJ. They also all have a third section 
unique to their source file (that is, a_asm, b_asm, and c_asm). Let's say you invoked LINK, passing it 
the command line 
 
OBJ B.OBJ C.OBJ 
 
The order of segments (and how sections with the same name are combined) is shown in the right-
hand side of Figure 2. You can download the source and OBJ files from the link at the top of this 
article. This way, you can experiment with different linker command lines—for example "Link B.OBJ 
A.OBJ C.OBJ"—even if you don't have MASM or a compatible assembler. 
 
With these two rules in mind, you're a good way toward knowing how the linker does its job under MS-
DOS and 16-bit Windows. The Win32 linker adds several twists to what I just described, though. For 
starters, there's the $ section name rule. If a section name contains a $ in it (for example, .idata$4), 
the $ and everything that follows will be stripped off in the executable file. However, before the linker 
strips down the name, it combines the sections with names that match up to the $. The name portion 
after the '$' is used in arranging the OBJ sections in the executable. These sections are sorted 
alphabetically, based on the portion of the name after the $. For example, three sections called foo$c, 
foo$a, and foo$b will be combined into a single section called foo in the executable. The data in this 
section will start with foo$a's data, continue with foo$b's, and end with foo$c's. This automatic 
combining of sections with $ in their name is used in a variety of ways. You'll see one example later 
when I discuss imported functions. It's also used to create the data tables needed for static 
initialization of C++ constructors and destructors. 
 
Besides the $ combination rule, the Win32 linker has a few other special cases up its sleeve. Sections 
with the code attribute are given special preference and put first in the executable file. Following any 
code, the linker puts any uninitialized data sections—comprised of global data for which an initial 
value wasn't specified at the time of compilation (for instance, int i; declared as a global variable in 
C++). Next comes initialized data (including the .data section), as well as linker-generated data 
sections such as .reloc. 
 
Uninitialized data is usually put into a section called .bss by a compiler. It's rare to see a .bss section 
in an executable file these days, though. The Microsoft linker merges the .bss section into .data, 
which is the main initialized data section used by compilers. But wait, there's another catch! This only 
happens if the executable is for a subsystem other than Posix, and the subsystem version is greater 
than 3.5. Other sections that contain uninitialized data are left alone by the linker (that is, they aren't 
merged). 
 
Working backwards from the end of the executable, if there is a .debug section in the OBJs, it's placed 
last in the executable. In the absence of a .debug section, the linker tries to put the .reloc section last 
because, in most cases, the Win32 loader won't need to read the relocation information. Cutting down 
the amount of the executable that needs to be read decreases the load time. I'll describe relocations 
later. 
 
Yet another exception to the basic two rules that comes up under Win32 is removable sections. These 
sections exist in an OBJ file, but the linker doesn't copy them into the executable. These sections 
typically have the LINK_ REMOVE and LINK_INFO attributes (see WINNT.H), and are 
named .drectve. Microsoft compilers spit them out to pass on information to the linker. If you look at 
an OBJ that was compiled with Visual C++, you'll see that the data in the .drectve section probably 
looks something like this: 



What is a Linker and How Does it Work 
Matt Pietrek 

 

Revised July 1997  Page 4 of 9 

 
-defaultlib:LIBC -defaultlib:OLDNAMES 
 
If this data looks suspiciously like command-line arguments to the linker, you're on the right track. You 
can see other evidence of this when you use the __declspec(dllexport) modifier with C++. For 
example: 
 
void __declspec(dllexport) ExportMe( void ){...} 
 
 
will cause the .drectve section to also contain: 
 
-export:_ExportMe 
 
Sure enough, if you look at the list of command-line options to LINK, -export is one of them. 
 
Fixups and Relocations  
Why can't compilers simply generate executable files directly from the source file, thereby eliminating 
the need for a linker? The primary reason is that most programs don't consist of a single source file. 
Compilers specialize in taking a single source file and producing a raw, machine-code equivalent. 
Because a source file may contain references to code or data external to the source file, a compiler 
can't generate exactly the right code to call that function or access that variable. Instead, the 
compiler's only option is to include extra information in the output file that describes the external code 
or data. The term for this description of external code and data references is a fixup. Putting it bluntly, 
the code that the compiler generates for accessing external functions and variables is incorrect, and 
must be fixed up later. 
 
Consider a call to a function named Foo in C++: 
 
//... 
 Foo(); 
 //... 
 
The exact bytes emitted from a 32-bit C++ compiler will be this: 
 
E8 00 00 00 00 
 
The 0xE8 is the CALL instruction opcode. The next DWORD should contain the offset to the Foo 
function (relative to the CALL instruction). It's pretty clear that Foo probably isn't zero bytes away from 
the CALL instruction. Simply put, this code wouldn't work as expected if you were to execute it. The 
code is broken, and needs to be fixed up. 
 
In the above example, the linker needs to replace the DWORD following the CALL opcode with the 
correct address of Foo. In the executable file, the linker will write a DWORD with the relative address 
of Foo. How does the linker know this needs to be done? A fixup record tells it so. How does the linker 
know where function Foo is? The linker knows about all symbols in an executable because it's 
responsible for arranging and combining the components of the executable. 
 
Now, about those fixup records. For Intel-based OBJ files, there are only three types of fixup records 
that are normally encountered. The first are 32-bit relative fixups, known as REL32 fixups. (For the 
curious, they correspond to the IMAGE_REL_I386_REL32 #define in WINNT.H.) In the above 
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example of a call to function Foo, there will be a REL32 fixup record, and it will have the offset of the 
DWORD that the linker needs to overwrite with the appropriate value. If you were to run 
 
DUMPBIN /RELOCATIONS 
 
for the OBJ created by the above code, you'd see something like this: 
 
Symbol    Symbol 
  Offset    Type    Applied To  Index     Name 
  ————————  ————    ——————————  ——————    —————— 
00000004  REL32    00000000      7      _Foo 
 
In English, this fixup record says that the linker needs to calculate the relative offset to function Foo, 
and write that value to offset four in the section. Since this fixup record is only needed by the linker 
prior to creating the executable, it's discarded and doesn't appear in the executable. Why then do 
most executables contain a section called .reloc? This is where the second type of fixup comes into 
play. Consider the following program: 
 
int i; 
 int main() 
 { 
     i = 0x12345678; 
 } 
 
Visual C++ generates this instruction for the assignment in the executable: 
 
MOV DWORD PTR [00406280],12345678 
 
What's interesting is the [00406280] part of the instruction. It's referencing a fixed location in memory, 
and assumes that the DWORD containing the variable i is 0x6280 bytes above the load address of 
the executable file, which is at 0x400000 by default. Now, consider what happens if the executable 
can't be loaded at the default load address. Instead, let's say that the Win32 loader loads it 2MB 
higher in memory (that is, the executable loads at 0x600000). When this happens, the [00406280] 
part of the instruction needs to be adjusted to 0x00606280. 
 
It's for just such occasions that DIR32 (Direct 32) fixups are used in OBJ files. They signify locations 
where the actual (direct) address of something needs to be plugged in. By implication, they also 
signify the locations where the load address of the executable file is significant. When creating the 
executable, the loader takes the DIR32 fixups from the OBJs and creates the .reloc section. Before 
this happens though, running DUMPBIN /RELOCATIONS on the OBJ shows: 
 
Symbol   Symbol 
  Offset    Type    Applied To  Index    Name 
  ————————  —————   ——————————  ——————   —————— 
00000005  DIR32    00000000      4     _i 
 
The fixup record says that the linker needs to calculate the direct 32-bit address of the variable _i, and 
write that value to offset five in the section. 
 
The .reloc section in an executable is basically a series of addresses in the executable where the 
difference between the default and actual load address needs to be accounted for. By default, the 
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linker creates the executable so that the .reloc section isn't needed by the Win32 loader. However, 
when the Win32 loader needs to load an executable somewhere other than its preferred load address, 
the .reloc section allows all the direct references to code and data to be updated. 
 
The third type of fixups commonly found in Intel OBJs, DIR32NB (Direct 32, No Base), are used for 
debug information. One of the secondary jobs of the linker is to create debug information that includes 
the names of functions and variables, along with their addresses. Since only the linker knows where 
all the functions and variables will end up, the DIR32NB fixup is used to indicate spots in the debug 
information where the address of a function or variable is needed. The key difference between DIR32 
and DIR32NB fixups is that the values patched in for DIR32NB fixups don't include the default load 
address of the executable. 
 
Libraries  
In some circumstances, it's worthwhile to combine two or more OBJs together into a single file, which 
can then be given to the linker. The classic example of this is the C++ runtime library (RTL). The C++ 
RTL is made up of numerous source files that are compiled, and the resulting OBJs are combined into 
a library. For Visual C++, the standard, single threaded, static version of the runtime library is called 
LIBC.LIB. There are other variations for debugging (for example, LIBCD.LIB) and multithreading 
(LIBCMT.LIB). 
 
Library files usually have the .LIB extension. They consist of a library header, followed by the raw data 
of the contained OBJs. The library header informs the linker which symbols (functions and variables) 
can be found in the following OBJs, as well as which OBJ a given symbol resides in. You can see the 
contents of a library via the DUMPBIN /LINKERMEMBER switch. Without going into the details of why, 
you'll find DUMPBIN's output more readable if you specify :1 or :2 afterwards. For example, using 
PENTER.LIB from Visual C++ 5.0 with the command 
 
"DUMPBIN /LINKERMEMBER:1 PENTER.LIB" 
 
produces this snippet of output: 
 
6 public symbols 
       180 _DumpCAP@0 
       180 _StartCAP@0 
       180 _StopCAP@0 
       180 _VERSION 
       180 __mcount 
       180 __penter 
 
The 180 in front of each symbol name indicates that the symbol (for instance, _DumpCAP@0) can be 
found in an OBJ file beginning 0x180 bytes into the library. As you can see, PENTER.LIB only has 
one OBJ in it. More complicated LIB files will have multiple OBJs, so the offsets preceding the symbol 
names will be different.  
 
Unlike OBJs passed on the command line, the linker does not have to include every OBJ in a library 
into the final executable. Quite the opposite, in fact. The linker won't include any OBJ code or data 
from a library OBJ unless there's a reference to at least one symbol from that OBJ. Put another way, 
explicitly named OBJs on the linker command line fly first class, and are always included in the 
executable. OBJs from LIB files fly standby, and are only included in the executable if referenced.  
 
A symbol in a library can be referenced (and hence, its OBJ included) in three ways. First, there can 
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be a direct reference to a symbol from one of the explicit OBJ files. For example, if I were to call the 
C++ printf function from a source file I wrote, there would be a reference (and a fixup) generated for it 
in my OBJ file. When creating the executable, the linker would search its LIB files for the OBJ 
containing the printf code, and include the OBJ it finds.  
 
Second, there can be an indirect reference. Indirect means an OBJ included via the first method 
contains references to symbols in yet another OBJ file in the library. This second OBJ may in turn 
reference symbols in a third OBJ file in the library. One of the linker's toughest jobs is to track down 
and include every OBJ that has a referenced symbol, even if that symbol is located via 49 levels of 
indirection.  
 
When looking for a symbol, the linker searches the LIB files in the order it encountered them on the 
command line. However, once a symbol is found in a library, that library becomes the preferred library, 
and is given first crack at all future symbols. The library loses its favored status once a symbol isn't 
found in the library. In this case, the next library in the linker list is searched. (For a more technically 
detailed description, see the Microsoft Knowledge Base article Q31998.) 
 
Let's now address the issue of import libraries. Structurally, import libraries are no different than 
regular libraries. When resolving symbols, the linker doesn't know the difference between an import 
library and a regular library. The key difference is that there's no compilation unit (for example, source 
file) that corresponds to each OBJ in the import library. Instead, the linker itself produces the import 
library, based upon the symbols that are exported from an executable being built. Put another way, 
when the linker creates the exports table in an executable, it also creates the corresponding import 
library to reference those symbols. This point leads nicely to my next topic, the imports table. 
 
Creating the Imports Table  
One of the most fundamental features that Win32 rests upon is the ability to import functions from 
other executables. All of the information about the imported DLLs and functions resides in a table in 
the executable known as the imports table. When it's in a section all by itself, this section is 
named .idata.  
 
Since imports are so vital to Win32 executables, it may seem strange that the linker doesn't have any 
special knowledge of import tables. Put another way, the linker doesn't know or care whether a 
function you've called resides in another DLL, or within the same executable. The way that this is 
accomplished is all very clever. By simply following the section combining and symbol resolution rules 
described above, the linker creates the imports table, seemingly unaware of the special significance of 
the table. 
 
Let's look at some fragments from an import library to see how the linker accomplishes this feat. 
Figure 2 shows portions of running DUMPBIN on the USER32.LIB import library. Pretend that you've 
called ActivateKeyboardLayout API. A fixup record for _ActivateKeyboardLayout@8 can be found in 
your OBJ file. From the USER32.LIB header, the linker determines that this function can be found in 
the OBJ at offset 0xEA14 in the file. At this point, the linker is committed to including the contents of 
this OBJ in the finished executable (see Figure 3). 
 
From Figure 3, you can see that a variety of sections from the OBJ will be brought in, 
including .text, .idata$5, .idata$4, and .idata$6. In the text section is a JMP instruction (the 0xFF 0x25 
opcode). From the COFF symbol table at the end of Figure 3, you can see that 
_ActivateKeyboardLayout@8 resolves to this JMP instruction in the .text section. Thus, the linker 
hooks up your CALL to ActivateKeyboardLayout to the JMP instruction in the .text section of the 
import library's OBJ. 
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The linker combines the .idata$XXX sections into a single .idata section in the executable. Now recall 
that the linker has to follow the rule for combining sections with a $ in their name. If there are other 
imported functions brought in from USER32.LIB, their .idata$4, .idata$5 and .idata$6 sections will also 
be thrown into the mix. The net result is that all the .idata$4 sections create one array, while all 
the .idata$5 sections create another array. If you're familiar with the term "import address table," this 
process is how that table is created.  
 
Finally, notice that the raw data for the .idata$6 section contains the string ActivateKeyboardLayout. 
This is how the name of imported functions make it into the import address table. The important point 
is that creating the import table isn't a big deal for the linker. It's just doing its job, following the rules I 
described earlier.  
 
Creating the Exports Table  
Besides creating an import table for executables, a linker is also responsible for creating the opposite: 
the exports table. Here, the linker's job is both harder and easier. In pass one, the linker has the task 
of collecting information about all the exported symbols and creating an exported function table. 
During the first pass, the linker creates the export table and writes it to a section called .edata in an 
OBJ file. This OBJ file is standard in all respects, except that it uses an extension of .EXP rather 
than .OBJ. That's right, you can use DUMPBIN to examine the contents of those EXP files that seem 
to accumulate in the presence of DLLs that you build. 
 
During its second pass, the linker's job is almost trivial. It simply treats the EXP as a regular OBJ file. 
This in turn means that the .edata in the OBJ will be included in the executable. Sure enough, if you 
see an .edata section in an executable, it's the export table. These days, though, finding an .edata 
section is increasingly rare. It seems that if the executable uses the Win32 console or GUI 
subsystems, the linker automatically merges the .edata section with the .rdata section, if one is 
present. 
 
Wrap Up  
Obviously, a linker has many more jobs than I've described here. For example, producing certain 
types of debug information (such as CodeView info) is a major piece of a linker's total work. However, 
creating debug information isn't an absolutely mandatory job for the linker, so I haven't spent any time 
describing it. Likewise, a linker should be able to create a MAP file listing the public symbols that were 
included in the executable, but again it's not a mandatory function of a linker. 

While I've covered a lot of complex ground, at its heart a linker is simply a tool for combining multiple 
compilation units into a functioning executable. The first cornerstone is in combining sections; the 
second is in resolving references (fixups) between the combined sections. Throw in a dash of 
knowledge about system-specific data structures such as the exports table, and you've covered the 
basics of this powerful and essential tool. 
 
 

Figure 1   Commonly Encountered Sections 
 

Figure 1 Commonly Encountered Sections 
.text Machine code instructions. 
.data Initialized data. 
.rdata Read only data. OLE GUIDs are stored here, among other 

things. 
.rsrc Resources. Produced by the resource compiler, and placed into 



What is a Linker and How Does it Work 
Matt Pietrek 

 

Revised July 1997  Page 9 of 9 

RES files. Linker copies it to the executable. 
.reloc Base relocations. Produced by the linker. Not found in OBJs. 
.edata The exported function table. Created by the linker and placed 

in an EXP file. Linker copies it to the executable. 
.idata Imported function table in an executable file. 
.idata$XXX Portions of an imported function table. The librarian creates 

these sections in an import library. The linker combines them 
into the final .idata section in the executable. 

.CRT Tables of initialization and shutdown pointers in the executable 
that are used by the Microsoft C++ runtime library. 

.CRT$XXX Initialization and shutdown pointers in OBJs, prior to the linker 
combining them in the executable. 

.bss Uninitialized data. 

.drectve OBJ file section containing linker directives. Not copied to 
executable. 

.debug$XXX COFF symbol table information in an OBJ file. 

Figure 3   An Imports Table 

 1121 public symbols 
  
      EA14 _ActivateKeyboardLayout@8 
 ... 
  Archive member name at EA14: USER32.dll/ 
 ... 
  
 SECTION HEADER #2 
    .text name 
 RAW DATA #2 
 00000000  FF 25 00 00 00 00                                 .%.... 
  
 ... 
  
 SECTION HEADER #4 
 .idata$5 name 
 RAW DATA #4 
 00000000  00 00 00 00                                       .... 
  
 ... 
  
 SECTION HEADER #5 
 .idata$4 name 
 RAW DATA #5 
 00000000  00 00 00 00                                       .... 
  
 ... 
  
 SECTION HEADER #6 
 .idata$6 name 
 RAW DATA #6 
 00000000  00 00 41 63 74 69 76 61 | 74 65 4B 65 79 62 6F 61   ..Activa|teKeyboa 
 00000010  72 64 4C 61 79 6F 75 74 | 00 00                     rdLayout|.. 
  
 ... 
 COFF SYMBOL TABLE 
 ... 
 003 00000000 SECT2  notype ()    External     | _ActivateKeyboardLayout@8 
 


